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Introduction

1. Introduction

Recently, a concept of nonlinear accelerator lattices with two ana-
lytic invariants has been proposed [1]. Based on further studies [2],
the Integrable Optics Test Accelerator (IOTA) was designed and and
is being constructed at the Fermi National Accelerator Laboratory.
Sush a nonlinear lattice may be helpful in suppression of the col-
lective instabilities by introducing a relatively large tune spread in a
beam, while reducing phase-space area occupied by chaotic trajec-
tories.

[1] V. Danilov and S. Nagaitsev, “Nonlinear Accelerator Lattices with One and Two Analytic Invariants”,
Phys. Rev. ST Accel. Beams 13, 084002 (2010).

http://prst-ab.aps.org/abstract/PRSTAB/v13/i8/e084002

[2] “Proposal for an Accelerator R&D User Facility at Fermilab’s Advanced Superconducting Test Accelerator
(ASTA)”.

http://apc.fnal.gov/programs2/ASTA_TEMP/index.shtml

http://prst-ab.aps.org/abstract/PRSTAB/v13/i8/e084002
http://apc.fnal.gov/programs2/ASTA_TEMP/index.shtml
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Example: 1-D Nonautonomus Henon Map

Even a simple 1-D model of sex-
tupole does not provide integrabil-
ity:(

cos θ sin θ
− sin θ cos θ

)
×
(

1 0
ε 3 q 1

)

Video: Stroboscopic Poincare cross-section shows the shrink of phase

space volume with regular trajectories due to increasing strength of non-

linearity.
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Concept of 2D paraxial nonlinear integrable optics

2. Concept of 2D paraxial nonlinear integrable optics

Desired spread of frequencies can be achieved by adding to the
Hamiltonian an additional nonlinear potential:

K[px , pz , x , z ; s] =
∑
q=x ,z

[
p2q
2

+ gq(s)
q2

2

]
︸ ︷︷ ︸

K0[px ,pz ,x ,z;s]

+ V (x , z , s) .

In general, the new equations of motion do not necessarily provide
two (and even a one) analytic invariants as it was in the case of
linear lattice. Below, we will consider one of the possibile ways of
how to modify a paraxial Hamiltonian preserving the integrability at
the same time [Danilov, Nagaitsev].
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First integral of motion

2.1 First integral of motion

Consider an accelerator lattice which provides axially
symmetric linear focusing, i.e. ∀ s : gx(s)=gz(s)

Step 1: Change of independent variable

The betatron phase advance ψ(s) can be choosen as a new inde-
pendent variable. The new Hamiltonian K̃ would yield the same
physical motion as K if their gradients are proportional:

∂K̃
∂pq

= λ−1(s)
∂K
∂pq

,
∂K̃
∂q

= λ−1(s)
∂K
∂q

, which gives

K̃[px , pz , x , z ;ψ] = β [s(ψ)] K[px , pz , x , z ; s(ψ)].
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First integral of motion

Step 2: Transformation to normalized coordinates

Subsequent canonical transformation, (p, q)→ (Pq, ηq), moves the
time dependence into the nonlinear term.

ηq = q/
√
βq,

Pq = pq
√
βq−q

β′q

2β
3/2
q

,

where ′
def
= d/dψ.

2 Jη

ψ

2 J β

s

q

a.1 a.2

b.1 b.2

Figure: Particle trajectory (a.1,2) and the evolution of the phase-space

ellipse along the accelerator circumference (b.1,2) in old and new canonical

variables respectively.
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First integral of motion

Step 3: Special “time”-dependence

H[Px ,Pz , ηx , ηz ;ψ] =
∑
q=x ,z

(
P2
q + η2q

2

)
+ β [s(ψ)] V (q(η, ψ), ψ)

One can see that at least one integral of motion, the Hamiltonian
by itself, can be ensured by a special “time”-dependence of the non-
linear potential which compensate a modulation by the β-function:

β [s(ψ)] V (q(η, ψ), ψ) = U(ηx , ηz).
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Second integral of motion

2.2 Second integral of motion

H[Px ,Pz , ηx , ηz ;ψ] =
∑
q=x ,z

(
P2
q + η2q

2

)
+ U(ηx , ηy )

A presence of a second integral can be guaranteed by the choice of
new generalized coordinates where variables can be separated.

Harmonic condition

Additional constraint on a potential U(ηx , ηz) to satisfies the Laplas
equation essentially reduce the number of possible choises among
the whole possible functions: only three different families of such a
integrable lattices were found for the invariant in the form

W = A(x , z)P2
x + B(x , z)PxPz + C (x , z)P2

z + D(x , z).
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3. Variables separation in polar coordinates

In the normalized polar coordinates (r , θ):

ηx = r cos θ, Px = pr cos θ − pθ
r

sin θ,

ηz = r sin θ, Pz = pr sin θ +
pθ
r

cos θ,

the variables separation is possible for the potentials in the form:

U(r , θ) = f (r) +
h(θ)

r2

where f (r) and h(θ) are arbitrary functions.
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Harmonic potentials in polar normalized coordinates

B ln r — potential of the straight wire carries constant current
(special “time”-dependence can not be ensured)

A sin(2θ + ϕ)

r2
— point-like magnetic quadrupole

(s-independent potential remains so after the transforma-
tion to the normalized coordinates and time)

ηx

ηz

ηx

ηz ηx ηz

0 0

Levels of

U(     ,     )

0

0 0

a. b.
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4. Transverse motion model

Finally we have a Hamiltonian

H[pr , pθ, r , θ;ψ] =
1

2

(
p2r +

p2θ
r2

)
+

r2

2
+

A sin(2θ + ϕ)

r2
,

with two invariants of motion:

energy

E =
p2r + r2

2
+

W

r2

effective angular momentum

W =
p2θ
2

+ A sin(2θ + ϕ)
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Transverse motion model

Radial motion

Radial motion

Ueff
r

p
r

r

U
eff
r

r0

p
r

r0r r

r

E

0 0r

r

E

0

0

r

W < 0

W > 0

r

Jr (E ) =
1

2π

∮
pr dr =

E −
√

2W

2
ωr =

∂H
∂Jr

= 2
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Angular motion

Angular motion

−2 A

2 A

A

−A

0

−π π/20−π/2 θ

U
eff

π/20−π −π/2

0

θ

W = 0

−A < W < 0

W = −A

Falling to the
center:

Libration:

0 < W < A

Separatrix:

W = A

Rotation around
singularity:

W > A

θ

p
θ
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Angular motion

Trajectories classification

2π 2L 3L 4L

ηz

ηx

ηz

 θ+

r+ r+

r
ηx

 θ+

ηz

ηx

r+

r

a. b. c.

b.1 b.2 b.3 b.4
ω   = 2r

ψ

η
x,z

θ

ψ
4π2π

θ

θ

+
r

ψ
4π2π

r

r

r

+

0

x,z

s
4π 6LL 5L

ω   = 3.41θ

Figure: Particle trajectory in the normalized coordinates for
(a.) falling to the center (−A <W < 0)
(b.) libration (0 <W < A)

(c.) rotation around the origin (W > A).
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Transverse motion model

Angular motion

Frequency dependence of the amplitude for the angular motion

Α

Jθ θω  (     )

J

ω

1

0

J(W = −A) J(W = 0) J(W = A)

Pendulum

ωθ =
1√
2W

(
∂Jθ
∂W

)−1
=

1√
2W
×
{

2 ωpend

ωpend
,
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Model ring

5. Model ring

Guide to the design

The use of light particles, like e−, is as impractical since they
will be lost on the inner apperture; thus, below we will consider
the design of an accelerator ring for protons, since radiation
effects are negligible for them.

The concept of nonlinear integrable optics under consideration
requires an axially symmetric focusing in the accelerator ring.
A superperiod of such a lattice can be realized with a drift
sapace of length L, where the nonlinear lens is located, and an
optics insert (so-called T-insert), which is equivalent to the thin
axially symmetric lens with the focal length equal to 1/k .
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For all further simulations we will use a parameters designed for
IOTA ring:

Linear Lattice Parameters

# of superperiods 4
# of nonlinear lenses 2
Circumference, Π (m) 38.7
Bending diploe field, B (T) 0.7
Drift space length, L (cm) 200
T-insert strength parameter, k (cm−1) ∈ (0; 0.02)

Beam at the Injection

Beam full energy, Eeq (MeV) 938.75
Full momentum, Peq (MeV/c) 60
Normalized emittance, ε⊥norm (cm rad) 2× 10−5
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IOTA Layout

βmin ≈ 100 cm, βmax ≈ 200 cm, ν ∈ (0; 2)

1
−k

0

0 0
0

1
−k0

0
0 0

0
0

1

1

Quadrupole
Bending magnet

Nonlinearlens

T−insert

1 m

L

T−insert

1 1

maxβ    ε

s

s

L

L

2L

2L

0

0

β

ψ

s

α

L 2L
0

maxβ

β min

2πν
n

L/2γ

εγ

p

q
s=   0 s= + 0

s= L/2 0 < s < L/2

ε/γ

Figure: IOTA ring layout (left) and optical functions behavior in F
2OF

2

lattice.
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Nonlinear lens parameters

The design of proposed nonlin-
ear lenses bring in two major
inevitable perturbations. They
are associated with the special
longitudinal dependence of the
field, and, the physical realiza-
tion of poles of the lens.

Rα

Ια
ρ

I    = −I    = I1,3 2,4

R    = (  b,0)1,3

R    = (0,  b)2,4

α αR   =    − Rρ
D/2

b
O

O’

ρ in

inner wall
of vacuum
chamber

As = −µ0
2π

∑
α=1,2,3,4

Iα ln |R̃α|

=
µ0I

π

(
b2

cos 2θ

ρ2
+

b6

3

cos 6θ

ρ6
+ O

[(
b

ρ

)10
])



A Model Ring With Exactly Solvable Nonlinear Motion

Model ring

Supercond. Water cooling

Full momentum
Peq, (MeV/c) 60 30
Diametr of the wire
D, (mm) 6 7
Current density
ρI , (A/mm2) 100 10
Total current
I , (A) 2827 385
Inner radius of vacuum pipe
ρin, (cm) 0.85 1
Outer radius of vacuum pipe
ρout, (cm) 4 4
Strength of nonlinear lens
A, (cm2) 10.8× 10−4 4× 10−4
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6. Numerical integration

The use of a simple numerical integrators leads to the smear of the
trajectory and requires a very large number of slices.

Figure: Turn-by-turn

map for betatron fre-

quency ν = 0.5, when

particle should have

the same radial dis-

placement at fixed ob-

servation point.
s#=3  10

3
s#=3  10

3

0

2

−2

−4

0 21 3

s#=50

0 1 2

0

1

2

−1

−2

−3

z [cm]

z [cm]

x
 [

cm
]

x
 [

cm
]

x
 [

cm
]

x
 [

cm
]

1−st order integrator

2

0

−2

−4

0 21 3

s#=10

0 1 2
−3

−2

−1

0

1

2

z [cm]

z [cm]

8−th order integrator
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Numerical integration

Explicit symplectic integrators and Yoshida’s algorithm

Consider the Hamiltonian which can be split into N solvable parts
H(q,p) = H1 + . . .+HN and has a Lie map M(t) = exp(t : −H :).

• Therefore, one can construct a second-order integrator using a
symmetrized Lie map product (where Kk = exp(t : −Hk :)):

M2 = K1(t/2) . . .KN(t) . . .K1(t/2) = M(t) + o(t3).

• Yoshida’s algorithm allows the recursive construction of (2n + 2)-
th-order integrator as:

M2n+2(t) = M2n(χ1t)M2n(χ0t)M2n(χ1t) ,

where χ0 = − 21/(2n+1)

2− 21/(2n+1)
and χ1 =

1

2− 21/(2n+1)
.
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Numerical integration

Rate of convergence

log    #_slices10

dE
E

−log   10

16

4

2

6

8

10

12

14

1.0 1.5 2.0 2.5

(ν = 0.85)Superconducting lattice 
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Numerical integration
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7. Simulation of a monochromatic motion

Frequency Map Analysis (ideal kick):

0 4´10-4 8´10-4 12´10-4
0

2´10-2

4´10-2

6´10-2

W

E

0.0 0.5 1.0 1.5 2.0 2.5
-12

-11

-10

-9

-8

- 7

-6

-5

ΩΘ

log DΝx
2 + DΝ y

2

0.0 0.5 1.0 1.5 2.0 2.5
-12

-11

-10

-9

-8

- 7

-6

-5

ΩΘ

log DΝr
2 + DΝΘ

2
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Diffusion of invariants (ideal kick):

0.0 0.5 1.0 1.5 2.0 2.5
-16

-15

-14

-13

-12

-11

ΩΘ

log DWmax

0.0 0.5 1.0 1.5 2.0 2.5
-14

-13

-12

-11

-10

-9

ΩΘ

log DEmax
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Simulation of a monochromatic motion

Beam motion (exact kick):
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Simulation of a monochromatic motion

Poincare sections (exact kick):
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8. Results and Conclusions

1 The first paraxial nonlinear exactly integrable system has been
studied: analytical expressions for dynamical variables change
over the time as well as amplitude dependence of frequency are
obtained.

2 The possibility to create such a nonlinear lens were demon-
strated on the example of IOTA ring for 60 MeV protons.

3 Numerical methods for the simulation of perturbed nonlinear
system were discussed (requires further study).

4 This system is of particular interest since it has an unusual
feature for accelerator physics: it has no equilibrium orbit. In
addition, this system is interesting in that it has the degeneracy.
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Results and Conclusions

Thank you for your
attention.
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